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We study the properties of one-dimensional photonic crystals with an �-negative and a �-negative defect.
With suitable parameters, the pair defect is equivalent to a transparent material with zero effective refractive
index. This special pair defect has no influence on the spectral gap formed by the interference of propagating
waves in positive-refractive-index materials. However, the field distribution is modified noticeably by the
decaying wave in the pair defect. Particularly, the gap-edge field can be a highly localized wave instead of the
usual standing wave as the size of the pair defect increases. The localized gap-edge field can reduce the
switching thresholds for bistability greatly when Kerr-type nonlinear �-negative material is involved. A non-
ideal model when the �-negative and �-negative materials are dispersive and lossy is used to verify the unusual
properties.
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I. INTRODUCTION

Recently, photonic crystals containing metamaterials have
received special attention for their peculiar properties and
potential applications �1–6�. The metamaterials include
double-negative materials whose permittivity ��� and perme-
ability ��� are simultaneously negative �7,8� and single-
negative materials including �-negative media ���0, ��0�
and �-negative media ���0, ��0� �9–14�. It is known that
photonic crystals made of transparent �lossless� positive-
refractive-index materials can be opaque to the incident elec-
tromagnetic �EM� wave, owing to the appearance of photo-
nic band gaps �PBGs� �15,16�. The PBGs come from the
multiple scattering of propagating waves in the periodic
structure. On the other hand, the EM waves in single-
negative materials are decaying waves since their wave vec-
tors are complex. However, photonic crystals composed of
two kinds of opaque single-negative materials can be �per-
fectly� transparent because of the �resonantly� tunneling of
decaying waves �5,6�. Up to now, to the best of our knowl-
edge, there are few works on photonic crystals consisting of
transparent positive-refractive-index materials and opaque
single-negative materials. It is expected that the transmission
properties of this kind of photonic crystal will be special
because of the interactions between propagating and decay-
ing waves.

In this paper, we study the properties of one-dimensional
�1D� photonic crystals �with positive-refractive-index mate-
rials� containing an �-negative and a �-negative defect. The
pair defect with suitable parameters is equivalent to a trans-
parent material with zero effective refractive index. This spe-
cial pair defect does not affect the spectral gap induced by
the interference of propagating waves in the photonic crystal,
as shown in Sec. II. However, the field distribution involving
the decaying wave in the pair defect changes noticeably. The

field inside the pair defect can be enhanced greatly as the
size of the pair defect increases. Accordingly, the gap-edge
field becomes a highly localized wave instead of standing
wave. In Sec. III, we show that the localized gap-edge field
can facilitate the production of bistability when the dielectric
constant of the �-negative material is of Kerr type. In Sec.
IV, we confirm that our results still exist when the single-
negative materials are dispersive and lossy. Finally, we con-
clude in Sec. V.

II. LOCALIZED GAP-EDGE FIELDS

We assume that a 1D photonic crystal composed of
positive-refractive-index materials is doped by an �-negative
and a �-negative defect, as schematically shown in Fig. 1.
We denote the structure as �AB�mCD�AB�m−1A. A and B in-
dicate positive-refractive-index materials. C and D represent
a �-negative material and an �-negative material, respec-
tively. m is the period number. The permittivity and perme-
ability of A, B, C, and D layers are supposed to be �A, �A,
�B, �B, �C, �C, �D, and �D, respectively. The thicknesses of
A, B, C, and D layers are assumed to be dA, dB, dC, and dD,
respectively.

We suppose a transverse electric wave, e.g., the electric

field E� lying in the y direction as shown in Fig. 1, is normally
�along the z direction� incident on the structure. The media in
the two sides of the structure are air. The treatment for a
transverse magnetic wave is similar. The transmittance of the
structure and the field distribution can be obtained by means
of the transfer-matrix method �14,17�. In the following cal-
culation, we suppose that �A=9, �B=2, �A=�B=1, �C=1,
�C=−1, �D=−1, �D=1, dA=dB=18 mm, and m=8. First, we
consider the pair defect composed of a �-negative �C� layer
and an �-negative �D� layer. The pair defect is perfectly
transparent in the zero �volume� average permittivity and
permeability conditions:

�̄ =
�CdC + �DdD

dC + dD
= 0,
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�̄ =
�CdC + �DdD

dC + dD
= 0. �1�

Equations �1� can be derived from the general result in Ref.
�12�. They are equivalent to the impedance matching and
effective-phase-shift matching conditions in Ref. �11�. The
EM wave can tunnel through the pair defect satisfying Eqs.
�1� without any phase delay since the pair defect is reduced
to nihility �12�. The tunneling mode is localized at the inter-
face between the two kinds of layers in order to match the
boundary condition �6�. Then, we study the properties of a
1D photonic crystal with the embedded pair defect. The vari-
ance of the transmittance of the structure with different val-
ues of dC and dD is shown in Fig. 2. The frequency is the
angular frequency in units of gigahertz. Figure 2�a� gives the
transmittance of a perfect 1D photonic crystal. A forbidden
gap appears because of the interference of propagating waves
in A and B layers. After a pair defect satisfying Eqs. �1� is
inserted into the 1D photonic crystal, it is seen that the trans-
mittances of the structures in Figs. 2�b� and 2�c� remain in-

variant, as compared to that in Fig. 2�a�. In fact, when Eqs.
�1� are met, the pair defect is equivalent to a transparent layer
with zero effective refractive index. This special pair defect
has no effect on the interference of propagating waves in A
and B layers since the interference comes from the phase
difference. However, once deviating from the conditions of
Eqs. �1� a lot, the transmittance of the structure will change
greatly. The EM wave can hardly transmit through the struc-
ture in a wide frequency region, as shown in Fig. 2�d�. Ac-
tually, �̄=−3/5�0, �̄=3/5�0 when dC=12 mm and dD
=48 mm. This means the pair defect in this case is effec-
tively opaque and the EM wave will be blocked.

Although the transmittance of the structure does not
change as long as Eqs. �1� are met, the field configuration
indeed changes noticeably because of the decaying wave in
the pair defect. We focus on the fields corresponding to the
gap-edge frequencies. The high gap-edge frequency in Fig.
2�a� is denoted by fH. The electric field is denoted by E�z�.
We suppose the square of the incident electric field is
1 V2/m2. In Fig. 3 we calculate the square of the electric
fields ��E�z��2� inside the structures used for Figs. 2�a�–2�c�
at frequency fH. For a perfect 1D photonic crystal, the elec-
tric fields corresponding to frequency fH concentrate their
energy in the low-� regions, as shown in Fig. 3�a�. The gap-
edge field is a standing wave. In Figs. 3�b� and 3�c� we show
the �E�z��2 inside a 1D photonic crystal with a pair defect for
different values of dC=dD. The gap-edge field is a propagat-
ing mode in the photonic crystal while a decaying-wave-
based interface mode in the pair defect. It is seen from Figs.
3�a�–3�c� that the squares of the fields in the photonic crys-
tals are the same, regardless of the value of dC=dD. But the
square of the field in the pair defect boosts noticeably when
dC=dD increases, as shown in Figs. 3�b� and 3�c�. The peak
value at the center of the pair defect is enhanced more than
one order of magnitude when the value of dC=dD increases
from 18 to 48 mm. In fact, the “enhancement” inside the pair
defect with increasing dC=dD is the property of the pair de-
fect. In Fig. 4 we calculate �E�z��2 inside the pair defect sur-
rounded by the air for different values of dC=dD. It is seen
from Fig. 4 that peaking also occurs in the middle of the pair
defect as dC=dD increases. However, for the same value of
dC=dD, the peak value at the center of the pair defect sur-
rounded by photonic crystals is much higher than that of pair
defect surrounded by the air, as seen in Figs. 3�b� and 4�a�
�or Figs. 3�c� and 4�b��. This fact is due to the confinement

FIG. 1. Schematic of a 1D AB
photonic crystal with C and D de-
fects. A and B denote positive-
refractive-index materials. C and
D represent a �-negative material
and an �-negative material,
respectively.

FIG. 2. Transmittances through �AB�15A structure �a� and
�AB�8CD�AB�7A structures with different values of dC and dD �b�–
�d�. �A=9, �B=2, �A=�B=1, �C=1, �C=−1, �D=−1, �D=1, and
dA=dB=18 mm.
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effect of the PBGs of photonic crystals. Therefore, for a 1D
photonic crystal with a suitable pair defect, the gap-edge
field can evolve into a highly localized wave as the size of
the pair defect increases. However, for a 1D conventional
photonic crystal, only defect modes in a forbidden gap are
localized waves.

III. BISTABLE SWITCHING

It is known that a 1D photonic crystal is a distributed
feedback structure if one type of layer has Kerr-type nonlin-

earity �18,19�. The gap-edge frequency will shift dynami-
cally since the nonlinear dielectric constant varies with the
field, leading to the nonlinear effect such as bistability. For
this kind of nonlinear photonic crystal, each one type of layer
need has nonlinearity. However, for a 1D photonic crystal
with an �-negative and a �-negative defect, we only need a
nonlinear �-negative material to alter the gap edge since the
corresponding field can be highly localized at the pair defect.
We suppose the dielectric constant of the �-negative material
is of Kerr type, that is,

�C = �1 + ��3��E�z��2. �2�

In Eq. �2�, �1 is a linear dielectric constant,��3� is a nonlinear
coefficient. We take �1=1.18, ��3�=10−4 m2/V2, �C=−1.2,
�D=−1.2, �D=1.2, and m=8. The parameters of the positive-
refractive-index materials are the same as those in Fig. 2. In
this section, the input �output� intensity denotes the square of
the incident �transmitted� electric field. We treat the nonlin-
ear �-negative layer by means of a nonlinear transfer-matrix
method �20�. Then, we deduce recursively the input intensity
from the output intensity. In Fig. 5 we show the output ver-
sus input intensity for different values of dC=dD when the
frequency of the incident wave is 2.24 GHz �around the gap
edge�. Bistable hysteresis loops caused by the dynamic shift-
ing of the gap edge are both seen in Figs. 5�a� and 5�b�.
However, the switching thresholds in Fig. 5�b� for dC=dD
=36 mm are much lower than those in Fig. 5�a� for dC=dD
=18 mm. The switch-up threshold decreases about one order
of magnitude when the size of the pair defect doubles. In
Figs. 3�b� and 3�c� we see the gap-edge field is enhanced
greatly inside the pair defect as the size of the pair defect
increases. Accordingly, this highly localized gap-edge field
helps to reduce the switching thresholds for bistability no-
ticeably. Therefore, we can realize very low switching

FIG. 3. The square of the electric fields inside the structures
used for Figs. 2�a�–2�c� at frequency fH.

FIG. 4. The square of the electric fields inside the pair defect for
frequency at 2.25 GHz.

FIG. 5. Output vs input intensity for the structures with different
sizes of the pair defect.
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thresholds just by increasing the size of the pair defect in-
stead of adding the period number as usually done in con-
ventional photonic crystals.

IV. A DISPERSIVE MODEL

In the above calculations, we considered dispersionless
single-negative materials. In practice, the negative material
parameters should be dispersive. Now, we use the Drude
model to describe the single-negative materials, that is,

�C = �c, �C = �c −
�

�2 + i��m
, �3�

in a �-negative material and

�D = �d −
	

�2 + i��e
, �D = �d, �4�

in an �-negative material. In Eqs. �3� and �4�; �=2
f is
frequency in units of gigahertz and �m and �e denote the
damping. After Eqs. �3� and �4� are substituted into Eqs. �1�,
the imaginary parts of �̄ and �̄ can be neglected if �m and �e
are much smaller than �. With suitable parameters, we can
still find a frequency f0 satisfying �̄�f0�= �̄�f0�=0.

A bilayer �CD� structure made of a �-negative material
and an �-negative material described by Eqs. �3� and �4� is
only transparent in a frequency range. In order to get a wide

passband, we use �c=�d=1, �c=�d=1, �=	=400, dC=dD
=18 mm, and include small losses �m=�e=2
�3�106 s−1.
The transmittances through CD, �AB�15A, and
�AB�8CD�AB�7A structures are shown in Figs. 6�a�–6�c�.
With the chosen parameters, f0 is 2.25 GHz and just identical
to the high gap-edge frequency of the �AB�15A structure.
Moreover, the frequency range of the passband in Fig. 6�a�
overlaps that of the passband in Fig. 6�b�. So the transmit-
tance of the �AB�8CD�AB�7A structure is almost the same as
that of �AB�15A structure around frequency f0 except that the
transmittance decreases a little, as shown in Fig. 6�c�. In Fig.
7 we calculate the square of the electric field inside the struc-
ture used for Fig. 6�c� at frequency f0. The localized gap-
edge field is similar to that in Fig. 3�b� though the square of
the electric field decreases a little because of the dissipation.
Therefore, we verify that the results derived in the disper-
sionless case still exist when dispersive materials with small
losses are used.

V. CONCLUSION

In conclusion, we have studied the transmission properties
of 1D photonic crystals with an �-negative and a �-negative
defect by means of the transfer-matrix method. The transmit-
tance of the structure is independent of the pair defect so
long as the zero average permittivity and permeability con-
ditions maintain. With the increase of the size of the pair
defect, the gap-edge field evolves into a highly localized
wave. Bistability with low switching thresholds is produced
by the dynamic shifting of the gap edge when the dielectric
constant of the �-negative material is intensity dependent.
The unusual properties are still maintained even when the
single-negative materials are dispersive and lossy.
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FIG. 6. Transmittances through CD �a�, �AB�15A �b�, and
�AB�8CD�AB�7A �c� structures. �c=�d=1, �c=�d=1, �=	=400,
�m=�e=2
�3�106 s−1, dC=dD=18 mm. The parameters of A
and B are the same as those in Fig. 2.

FIG. 7. The square of the electric field inside the structure used
for Fig. 6�c� at frequency f0.
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